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Extending the Rule Space Model to a Semantically-Rich Domain:

Diagnostic Assessment in Architecture

Abstract

This paper presents a technique for applying the Rule Space model of cognitive diagnosis
(Tamuoka, 1983) to assessment in a semantically-rich domain. Responses to 22 architecture test
items, developed to assess a range of architectural knowledge, were analyzed using Rule Space.
Verbal protocol analyses guided the construction of a model of examinee performance, consisting
of processes for constructing an initial representation of an item (labeled und ), forming
goals and performing actions based on those goals ( y., and determining whether goals have
been attempted and satisfied (ch . Item attributes, derived from these processes, formed the
basis for diagnosis. Our technique extends Rule Space's applicability by defining attributes in
terms of item ch-arcteisti and the causal relations between characteristics and the problem-
solving model

Data were collected from 122 architects of various ability levels (students, architecture
interns, and professional architects). Rule Space successfully classified approximately 65%, 90%,
and 40% of examinees based, respectively, on attributes associated with the UndUestMId, solve, and
gwk processes of the problem-solving model. The findings support the effectiveness of Rule
Space in a complex domain and suggest directions for developing new architecture items by using
attributes particularly effective at distinguishing among examinees of different ability levels.

Index terms: diagnostic assessment; problems solving; architecture; rule space; item attributes;
computer-based testing
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xendin••he Rule Space Model to a Complex Domain:
gnost Assessment in Architecture

As testing pm oams begin to employ new forms of assessment, a common goal is to
comct tests whose demands are closely related to tasks in the target domain (Wiggins, 1989).
While recent research has presented several types of assessment tasks (e.g., simulation) that more
accurately capture relevant knowledge and skills, there remains the issue of rfo = eonn
How can we provide examinees with information beyond scores of overall proficiency,
information that captures the richness of knowledge and skills in a domain? In the current work,
we employ the Rule Space Model (Tatsuoka, 1983) to generate descriptions of examinee ability
that are far richer than those normally derived from large-scale assessment However, Rule Space
has been most successfully applied in the past only to relatively narrow topics in wel-defined
domains (e.g., mixed number subtraction, single-variable isolation in algebra). This paper
presents a technique for applying the Rule Space model of cognitive diagnosis (Tatsuoka, 1983) to
a semantically-rich domain in need of more authentic, yet tractable, assessments: architecture.

Architectur •Assessnet

Current architecture assessments consist primarily of short, verbal multiple-choice
questions or complex items that mimic the tasks architects normally encounter in the workplace.
Because architecture is a complex domain, individuals' scores on relatively simple, verbal multiple-
choice tests do not capture the complexity of the knowledge and skills to be assessed. We address
these issues by presenting examinees with figural response test items (Martinez, 1991; in press)
and by generating diagnostic profiles of examinees based on their performance using the Rule
Space model (Tatsuoka, 1983).

The figural response items used in this study differ from standard multiple-choice items in
that examinees must construct their answers and the responses consist of the generation or
manipulation of figural material (e.g., graphs, pictures). Figural response items are especially
suited to domains that are graphical or pictorial in nature; the domain of architecture is a natural
candidate for this form of assessment. The approach of using figural response items for
architecture assessment has a number of advantages. First, architecture is a graphical domain;
designs are drawn, rather than essays being written. Thus, the figural response format provides a
natural way for architects to express their ability. Second, constructed response items may be able
to tap skills otherwise inaccessible using the multiple-choice format. Martinez & Katz (1992)
showed, for example, that different skills are frequently tapped by figural response items compared
with their multiple-choice counterparts.

In this study, the figural response items were computer delivered; a sample item is shown
in Figure 1. Each item consists of a stem (top of screen), a diagram, and a set of tools for drawing
on or manipulating the diagram. The item in Figure 1 requires exarinees to move the structures at
the bottom of the screen (library, parking lot, and playground) on to the provided site, subject to
the explicit constraints stated in the item stem as well as to the implicit constraints that architects
associate with libraries, parking lots, and playgrounds (e.g., a playground should not be adjacent
to a parking lot; a parking lot must have street access).

Insert Figure 1 about here

Architecture brings certain challenges to the practice of large scale assessment. First, much
of architectural practice requires design, a notoriously complex cognitive skill. The duration of
design projects in architecture are typically measured in days or months, not minutes as with the
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usual examination item. Also, design tasks do not typically have "right" or "wrong" answers.
Rather, a continuum of designs satisfy the constraints of the task to a greater or lesser extent.
Further, in the real world, constraints on a design task are not immutable; often the architect may
relax certain initially specified constaints that he or she believes would allow for a better design
(Goel & Pironi, 1991). We do not seek to assess design skills directly. Although some of the
figural response items present simple design tasks, most were meant to assess architectural
knowledge through subsidiary tasks. For example, two items present a diagram of a building and
ask the candidate to specify locations of seismic joints. While a corresponding task set for an
architect might not be this simple, the task could come up as part of a larger design task in the real
world.

Architect=ue may be classified as a "semantically rich domain" (Simon, 1984) in that skilled
performance involves extensive specialized knowledge. Architecture knowledge is usually gained
over several years of intense study. This knowledge comes from a variety of disciplines, including
civil engineering, physics, history, psychology, construction, and art. This forms a second
challenge for architectural assessment. Optimally, assessment will produce similarly rich
descriptions of proficiency based on test performance. In the current work, we employ the Rule
Space Model (Tatsuoka, 1983) to generate descriptions of examinee ability that are far richer than
those normally derived from large-scale assessment.

Our approach, like that of many emerging test theories, blends traditional psychometric
approaches with developments in cognitive psychology (Gitomer & Yamamoto, 1991). Some new
approaches including Rule Space build on item response theory (IRI), in which individuals and
items are ordered along a proficiency continuum (Lord & Novick, 1969). One well-known
s hortcming of IRT is that identical estimates of overall proficiency may be derived from radically
different response patterns. If information about response patterns could be simplified and
preserved, these rich descriptions of performnce could be truly diagnostic (Mislevy, 1993).

The Rule Space Model

The Rule Space model provides descriptions of examinee performance that extend beyond
raw scores or uni-dimensional IRT estimates of overall proficiency. Items are decomposed into
attributes, which represent the latent traits that the items assess. Based on an examinee's pattern of
correct and incorrect responses, the Rule Space model infers the most likely combination of
attributes the examinee has mastered.

The diagnosis of cognitive errors made by examinees is a pattern classification problem. In
this study, the patterns are item response vectors, and the vectors are ones and zeroes indicating
correct and incorrect responses, respectively. The response vectors are classified as various
correct latent knowledge states. The Rule Space model, developed to solve this classification
problem, has three steps: (1) determination of classification groups, (2) formulation of a
classification space, and (3) classification of examinees' responses.

Dtemination of assificaton CM

We assume that each postulated cognitive attribute-declarative knowledge, cognitive
processes, solution strategies, and so forth-is tapped by at least one item in the pool. The
relationship between these cognitive attributes and the items is expressed by an incidence matrix Q,
whose order is the number of cognitive attributes k by the number of items n. If item j involves
attribute k, then Qkj = 1, otherwise Qkj = 0. Each item is therefore characterized by the cognitive
attributes required for its solution.
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For example, suppose there are three items whose two underlying attributes are denoted Al
and A2. Further, suppose A I is needed to solve items I and 3, and A2 is required in item 2.
Then, the incidence matrix Q (2x3) is:

Items
Attribute AI 1 0 1
AttributeA2 0 1 0

With three items, there are eight possible response vectors:

(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (I,1,1).

Given two attributes, there are four possible examinee knowledge states:

State 1. Examinee cannot do A1, but can do A2
State 2. Examinee cannot do A2, but can do A1
State 3. Examinee cannot do A1 nor A2
State 4. Examinee can doAl andA2

There are four jdl response vectors conforming to the four states:

State 1. (0,1,0)
State 2. (1,0,1)
State 3. (0,0,0)
State 4. (1,1,1)

Note that each ideal response vector corresponds to a unique vector of mastered attributes.
7he remaining possible response vectors--(1,0,0), (0,0,1), (1,1,0), (0,1,1)- do not conform
precisely to any of the models. The section entitled Classfication of Examinees' Reoo
discusses Rule Space's treatment of such "non-ideal" response vectors.

Tatsuoka (1991) and Varandi & Tatsuoka (1990) developed an algorithm to produce all
possible ideal response patterns, corresponding to all possible latent knowledge states from an
incidence matrix Q. The number of states is determined from the number of attributes, the number
of items, and the degree of attribute nesting. In applying Rule Space to other data sets, the number
of latent states has often exceeded 1000.

The Classificationm Spa=

In order to preserve continuity with current psychometric theories, the classification space
was formulated as a two-dimensional Cartesian product space of the IRT proficiency parameter 0,
and an index of the unusualness of an item response pattern ý, where "unusualness" refers to the
degree to which easier items are answered incorrectly and difficult items are answered correctly
(Tatsuoka & Linn, 1981; Tatsuoka, 1984; 1985; 1990; Tatsuoka & Tatsuoka, 1987). When an
examinee's response vector conforms well to the average performances on the test items, the
absolute value of C will be nearly zero. When C-values of a knowledge state are close to zero, that
is, close to the 0-axis, we can expect that many examinees will be diagnosed to have that
knowledge state. If the C-value associated with a knowledge state is large, positively or
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negatively, then we expect that state to be unusual in the sense that few examinees will be

diagnosed as having that knowledge state.

Classification of Examinees' Responses

Examinees' performances on test items are not always consistent with their unobservable
patterns of attribute mastery. Responses that deviate from an ideal response pattern are assumed to
contain random errors or 11=. Under the assumption that occurrences of slips on items are
indepndet across items, Tatsuoka & Tatsuoka (1987) showed that the distribution of the number
of slips follow a binomial distribution if the slippage probabilities are the same across the items,
and follow a compound binomial distribution if the slippage probabilities differ across items.

When the non-ideal response patterns associated with a particular ideal pattern, R, are
mapped into the Rule Space (by computing their 0 and ý values), they form a unique subset that

swarms around the point (OR, CR). The swarm of mapped points in the Rule Space follows

approximately a multivariate normal distribution with a centroid of (OR, CR), and is called the bug
distribution or Z distribution associated with response pattern R (Tatsuoka, 1990). When all
possible ideal item response patterns are mapped on to the Rule Space, one can apply Bayes'
decision rules for determining the minimum errors to classify an examinee's point (Ox, Cx) into
one of the possible latent states. More detailed discussions of the classification procedure can be
found in Tatsuoka (1990), Tatsuoka & Tatsuoka (1987, 1989), and Sheehan, Tatsuoka, & Lewis
(1991).

Applying Rule Space to Architecture Assessment

The items used in this research were intended to assess a wide range of architectural
knowledge and skills across several subdisciplines of architecture. Different items required
different problem-solving operations. For example, some items required examinees to specify the
properties of structural elements while others required the proper arrangement of architectural
elements on the computer. The range of operations used across items implied that defining
attributes in terms of low-level operations would produce an attribute set with little overlap across
items. This would defeat the purpose of the Rule Space. We therefore analyzed the architecture
items at a coarser grain, using attributes descriptive of higher-level processing as suggested by a
general model of problem solving. This approach required a modification to the procedure used in
other Rule Space analyses. We first defined a cognitive model that was general enough to account
for problem-solving behavior on all items. Attribute definitions were then based on the model. In
the next section, we describe the cognitive model and our procedure for defining item attributes.

The Cognitive Model

Our cognitive model was derived in part from a theory of computer interface use (Lewis &
Polson, 1990). This model was chosen because of ostensible similarities between problem solving
in user interface evaluation and solution of figural response items. Our adaptation of Lewis and
Polson's model was based on verbal protocols from one pilot subject who solved all 22
architecture itemsi. The analysis of protocols from a single subject was not used to produce a
dfntv cognitive model, but a hypthesized model which would guide us in developing
reasonable attributes. The reasonableness of this hypothesized model could, in turn, be supported
or falsified by our data.

1lThis pilot subject was not part of the test administration discussed in the next section.
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The model consists of processes relevant for constructing an initial representation of the
item (i.e., . Ixanlg the problem stem and provided diagram), forming goals and performing
actions based on those goals (i.e., solving the item), and determining whether goals have been
satisfied and if they have been satisfied correctly (i.e., cekng each problem solving step and the
final answer). The model asserts that these processes exist, but makes no claims as to their order.
For example, an examinee might come to a new understanding of a problem after attempting to
solve it or after checking an initial, incorrect solution. The processes hypothesized by the model
are summarized in Table 1.

Insert Table I about here

UmA= d The first step in solving any item is to understand what is being asked so that
the appropriate knowledge can be invoked. Each figural response item consisted of both a verbal
stem and a diagram, the atter of which may contain both graphical and verbal information. Thus,
ud n processes include: (a) reading and interpreting the verbal stem, (b) scanning and
inurpreting the diagram, and (c) relating the information in the stem and diagram to one's own
knowledge. This processing allows the examinee to form initial goals, and either a plan for
solving the item or a set of heuristics. An initial goal might be to apply a strategy learned in the
classroom or to invoke a general problem-solving method such as means-ends analysis, in which
one chooses at each step an action that will reduce the difference between the current state of the
problem and the desired goal state. In specifying the undersan processes-read stem, scan
diagram, and relate to one's own knowledge--no claims are made as to either the ordering of the
processes or the conditions under which they occur. Particular items will be less or more difficult
in terms of, say, reading and intepreting the stem, and it is just these sorts of differences which
form the basis for the item attribute definitions.

Solve. Once an initial representation of the problem has been built, and the initial goals
formed, the examinee must perform the actions that lead to solving the problem. Of course, while
solving a problem, an examinee may reformulate or refine an initial representation of an item. The
processes involved in solving an item are applied to each goal that has not yet been satisfied. Each
of these goals may be el by forming subgoals of the currently active goal or the examinee
may fform an action that will satisfy the current goal. An action may be physical, such as
drawing a line, or cognitive, such as finding a level area on a contour map. These two processes,
elaboration of goals and performance of actions, do not determine precisely how a particular item is
solved. Certain questions are left open. For example, which subgoals are formed when a
particular goal is elaborated? How does the examinee decide on which actions to perform to satisfy
a goal? Answering these questions requires a knowledge of the particular strategies used to solve
each item. Whatever strategy an examinee uses (whether problem-specific or general), that
strategy will determine which goals are attended to and in what order, and what subgoals are
formed.

£hek. Once an action has been performed, the results of that action may be evaluated to
ensure that the action was performed correctly and that it satisfies the original goal. If both
conditions are met, the examinee may mark that goal as finished (perhaps by saying something to
the effect of "Okay, that's done"), and proceed to the next unsatisfied goal. Thus, two types of
evaluations may occur: monitoring whether an action has been carried out as planned and noting
whether it satisfies the original goal.
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Attribute Creation

Because the figural response items were designed to assess a wide range of architectural
knowledge and skill, defining attributes in terms of the actual steps candidates take in solving the
items (the approach used in previous applications of Rule Space) was contra-indicated. Instead,
we defined attributes in terms of item characteristics or features. Each item has multiple features
and could be classified along several dimensions, but for purposes of attribute creation we
identified those features with a potential causal connection to examinee performance. The attributes
were defined by identifying features of the items that could be expected either to help or hinder
problem-solving. For example, we hypothesized that problem solving would be hindered during
the process "scan the provided diagram," if the diagram was a specialized graph (e.g., a
topographic map) that would not be understood by all examinees. The 38 attributes identified in
the task analysis are listed in Table 2. To illustrate the assignment of attributes to items, Table 3
shows the attributes associated with the "library" item of Figure 1 along with an explanation of
why that attribute was assigned.

Each attribute is associated with one or more of the three types of processing (understand,
solve, and check), and those assignments are shown in Table 4. The assignment of attributes to
process was made by two independent judges with an inter-rater agreement of 88%.
Disagreements were settled through discussion between the judges. Two independent judges also
determined the subset of elementary cognitive attributes needed to solve each question. The inter-
rater reliability for this process was again 88%. As before, disagreements were settled through
discussion between the judges.

Insert Tables 2, 3, and 4 Here

Method

Materiis and Design

Twenty-two figural response questions were constructed to draw upon skills needed
throughout the broad content of an architectural licensing examination. These questions were
developed for presentation on a computer with responses made through mouse movements and
clicks. The questions were divided into two eleven-item subsets, and each subset was
administered to a random half of the available subjects2 .

Subjects (N=122) were selected from three status groups: practicing architects (N=34),
architecture interns (N=35), and architecture students (N=53). The eleven item responses
provided by each subject were scored correct/incorrect and modeled with a two-parameter logistic
IRT modeL Maximum likelihood estimates of proficiency (0) were subsequently obtained for each
subject. These estimates were used to classify subjects into three equal-sized proficiency groups.
The cross-tabulation of status groups and proficiency groups is shown in Table 5.

2 Subjects solved only eleven of the figural response items because they were also administered a set of
complementary multiple-choice items. Time constraints did not permit additional testing. Contrasts between item
sets are reported in another study (Martinez & Katz, 1992).
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Insert Table 5 about here

Prcdure

In groups of six, subjects were given a verbal introduction to the item delivery system.
Following that, they each attempted the items individually on a computer. Of the 122 subjects,
three subjects generated verbal protocols to gather independent support for the cognitive model.
To generate the protocols, the subjects were asked to "think aloud" (Ericsson & Simon, 1984),
saying anything that they would normally "say" to themselves as they solved the items.

Rule Sinc Analyses

Rule Space analyses were conducted separately for each of the three groups of problem-
solving attributes identified above. This strategy was chosen for two reasons. One very practical
rason is that the combination of attributes made the possible number of knowledge states
astronomical for the entire set of 38 attributes, thus the total pool of attributes had to be sub-
divided. A second reason was to contrast attribute clusters in their ability to classify examinees.

Rule Space was carried out in two steps: First, the BUGLIB computer program (Varandi
& Tatsuoka, 1990) was used to determine the set of all possible latent knowledge states associated
with the specified stage; second, the RULESPACE computer program (Tatsuoka, Baille &
Sheehan, 1990) was used to classify subjects into one of the knowledge states. Three attempts
were made to classify each examinee, one for each of the three problem-solving process types
(umderstan sole and check.

Results

Verbal Protocol Results

Our cognitive model postulated that certain processes would be used as a subject solved the
architecture items. One way to gather evidence for the model is to show that these processes are
sufficient for explaining the verbalizations made by subjects (Ericsson & Simon, 1984). Eight
categories of subject verbalizations were defined, one category for each process in the cognitive
model and a "miscellaneous" category. These categories were defined through examining
verbalizations of the pilot subject as she solved eleven of the items. The sufficiency of the
categories was established by attempting to categorize the verbalizak,3ns on the remaining eleven
items. One rater categorized all of the subject's verbalizations, while another rater independently
categorized a portion of the verbalizations. The inter-rater agreement on the portion scored by both
raters was 82%. The final categories are shown in Table 6. The verbalizations encoded as
miscellaneous include single words or short phrases ("Okay," "Let's see"), statements concerning
the computer interface ("I have to click twice"), and statements irrelevant to the task.

Insert Table 6 about here

The categorization scheme was applied to the verbal reports of the three protocol subjects.
The cognitive model accounted for 71% of the verbalizations made by subjects; the remaining
verbalizations fell into the miscellaneous category. This result suggests that the model adequately
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captured subjects' problem-solving performance, and thus supports the validity of the cognitive
attributes created from this model.

Rule Soace Results

The projection of examinee response data into the two-dimensional Rule Space is presented
in Figure 2. Examinees' e values are plotted along the x-axis; ý values are plotted along the y-
axis. The symbols indicate status group membership. The plot shows that practicing architects are
located mostly in the medium to high proficiency region and form a cluster that is distinct from the
points plotted for interns and students.

Insert Figure 2 about here

Each examinee's performance was diagnosed three times, once for each of the understand,
solve, and check attributes. For each diagnosis, the examinee's point in the rule space was
compared to the points corresponding to the set of knowledge states associated with each attribute
group. The item/attribute incidence matrices developed for each problem-solving process type
determined the number of possible states: 803 for understand, 1208 for solve, and 121 for ghe
Within each process type, each knowledge state corresponded to a unique combination of mastered
attribu-'s and is represented by a unique point in the Rule Space.

The classification results for each of the three types of problem-solving processes are
presented in Table 7. Within each process type, the number and percentage of classified examninees
is broken down by IRT-proficiency level (low, medium, and high) and status group (student,
intern, architect). Two patterns are worth noting. The first is that the solve attributes are the most
powerful in classifying subjects across proficiency levels and status groups; in fact, all 41 low-
proficiency examinees were classified. The next most powerful set of attributes is under d.
followed by ghtk. A second pattern is that, almost uniformly, examinees in the lower proficiency
or status groups were more often classified than those in the higher groups. For example, twice
the percentage of low-proficiency examinees (61%) than high-proficiency examinees (30%) were
classified under che&k.

Insert Table 7 about here

The low classification rate achieved for the check processes is considered in Figure 3. In
this plot, the diamonds stand for latent knowledge states and the boxes indicate the examinees'
diagnostic location. The plot shows that the 121 knowledge states deduced from the check
incidence matrix do not coincide with the examinees' points. Thus, the attributes defined from the
£chek portion of the model do not capture examinee behavior, suggesting that examinee
performance is not greatly differentiated by check processes (or that we need to rework that portion
of the model).

Insert Figure 3 here
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Attribute Master Probabilities

An attribute mastery vector was estimated for each classified examinee. These vectors are
composed of zeros and ones, depending on whether the attribute in question was included in the
subset of mastered attributes defined for the examinee's state. Attribute mastery patterns were
averaged within proficiency and status groups, and analyzed using a repeated measures analysis of
variance design, as described in Sheehan, Tatsuoka, and Lewis (1991).3

P-values for the analysis of variance F-tests are reported in Table 8. The table provides
evidence for three clearly significant effects: proficiency group, attribute, and the attribute by
proficiency group interaction. These results are reassuring because they indicate that the attributes
associated with each problem-solving stage are differentially difficult and that examinees in
different proficiency groups tend to have different attribute mastery profiles.

The results obtained for the status group classification are not as clear-cut. Although the
main effect of status group is clearly not significant, the interaction of status group with attribute is
marginally significant. This indicates that the average probability of mastery values calculated for
some attributes differed among students, interns, and practicing architects, but these differences
did not hold up after averaging over all attributes. Thus, on the average, examinees in different
status groups did not differ in their mastery of the elementary cognitive skills identified in this
study.

Insert Table 8 about here

Table 9 presents the mean probability of mastery values estimated for the slvey attributes.
The different attribute mastery profiles obtained for low, medium and high proficiency examinees
are clearly indicated. The table also shows that attributes differ in discrimination. For example,
consider the probabilities listed for the "environment" attribute: On average, low proficiency
examinees mastered this attribute with a probability of .47; the corresponding probabilities for
medium and high proficiency examinees are .60 and .97, respectively. The varying probabilities
obtained for low, medium, and high proficiency examinees indicate that this attribute is highly
discriminatig. By contrast, the three mean values listed for the "learned procedure" attribute are
all very similar. Thus, this attribute is not particularly helpful at discriminating among examinees
of different ability levels.

Insert Table 9 about here

Discussion and Conclusions

This study exemplifies how an IRT-based model for estimation of overall proficiency can
be combined with the diagnostic classification of examinees. The results of the application of Rule
Space were satisfying: We were able to classify a large proportion of examinees, especially those
of low and medium ability. In principle, these classifications could be reported back to examinees

3A standard analysis of variance design would not have been appropriate for these data because the hypothesis of
multisample sphericity--hat is, independently observed attributes-is violated. The violation results from the fact
that, instead of measuring a single attribute on each examinee, our design involves taking 38 attribute
mmurements. Thus, non-zero correlations are expected among the attribute measurements associated with a
p-icut examinee.
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so that remediation in weak areas could proceed. Traditional psychometrics has served well in
discrinating among examinees for selection, placement, or classification on the basis of global
estimates of proficiency. Rule Space provides estimates of 0, but also yields information that
could serve the interests of the examinee in pin-pointing areas of non-mastery. Of course,
applications of the technique described in this paper to other complex domains may require a much
larger sample size than was used in the current study. Data from a relatively small number of
examinees were sufficient for the goal of this paper, which was to demonstrate and explain a
methodology for extending Rule Space.

In addition to diagnosis and estimation of 0, Rule Space provides a framework for
comparing a model of task performance to examinees' response data. There are few well-defined
methodologies for comparing models to data (but see Polk & Newell, 1991). especially those that
can accommodate a great variety of individual differences in examinees' knowledge, skill, and
strategy. Model testing proceeds as follows: On the basis of a cognitive model, items are analyzed
into their component cognitive attributes. The resulting item/attribute matrix (or matrices) leads to
strong predictions about examinees' response patterns. If the (0, ) position of an examinee's
response pattern is close to that of an ideal response pattern, that examinee is classified into the
knowledge state that the response pattern implies. To the extent that examinees' response patterns
can be classified, the analysis provides support for the cognitive model. There are of course
limitations to the Rule Space method. We have already noted that sets of attributes processed
together are limited in size. As they approach 25 or so, the combinations of attribute profiles
makes the possible number of ideal states unmanageable. Consequently, the attributes must be
clustered and run separately as in this study.

One contribution of this work is that we have outlined a methodology for applying Rule
Space to complex domains. Generally, a limitation of Rule Space is that at the level of fine-grained
analysis, the operations needed to solve items in a complex domain may not overlap a great deal.
Many attributes might in fact be unique to particular items within the item set. If this is the case,
the cognitive attributes must be cast at a higher-level of generality such as item characteristics (e.g.,
type of diagram presented) or general problem-solving approach needed to solve each item (e.g.,
recalling a fact versus applying a learned procedure). Given more general attributes, what can we
say about an examinee's performance? From a psychological viewpoint, the attributes tell us little
about the examinee's cognitive competence. But from an educational standpoint, the attributes
provide examinees with just the information they need to improve their performance on subsequent
tests. The attributes allow us to say that an examinee has difficulties with -ems having certain
properties. While we may have little information about the examinee's skill at a fine-grained level,
the diagnostic reports (which attributes are mastered and which aren't) does tell the examinee what
types of problems they should seek out and practice solving, and what components of problem
solving need special attention.

Attributes should be based on an independently constructed problem-solving model.
Analysis of verbal protocols, performed in this work, serves as one means for constructing and
verifying a cognitive model. The model supports attribute creation by showing which aspects of
the items would help or hinder problem-solving performance. In contrast to developing a list of
attributes intuitively, a cognitive model provides a rich description of each attribute because the
meaning of each attribute is derived from its place in the model. Methodologically, this rich
attribute description promotes a fuller understanding of what each attribute means and facilitates the
assigning of attributes to items.

Another contribution of this work is that we were able to examine the power of attributes to
discriminate among examinees of various levels. Knowing which attributes are highly
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discriminating has value for the construction of items as well as for the design and sequencing of
instruction. Differential relevance of attributes across proficiency groups also sheds light on the
nature of expert/novice differences in the domain of interest. Rule Space holds a great deal of
value for satisfying the requirments of traditional psychometrics and for diagnosis of individual
examinees. Through the use of such models, psychometrics has much to offer to learners and
teachers beyond estimates of global proficiency.
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Problem Solving Model

Attribute Group Processes

Understanding the Item Read the item stem
Scan the diagram
Recall relevant information

Solving the Item Set subgoals
Perform actions

Checking Performance Is the action correct?
Is the currnt goal completed?
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Tabe 2Aiu Definitions

Attribute Class Attribute Name Description Relations among
Attributes in a Class

Caatists of Picture Presented figure is a sketch The three attributes in this
Presented Figure of an actual object class are mnumali

exclusiv (if an item has
one attribute in this class,
by definition is does not
have another attribute from
the same class) and
c ustive (all of the items
may be classified as
having at least one of the
attributes in this class)

Diagram Presented figure is an
abstract diagram of an object

Specialized Presented figure is a graph
Diagram or chart - a visual

representation of some
information

Clarity of General Diagram Based on just the presented Mutually exclusive, but
Task obvious figure, its possible for not exhaustive

someone to understand what
task the item is asking them
to perform. Details
regarding the task included
in the item stem might still
be needed for correct
perfo of the task.

Own obvious Based on the presented
figure along with some prior
knowledge, it's possible for
someone to understand what
task the item is asking them
to perform. Details
regarding the task included
in the item stem might still
be needed for correct
performance of the task
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Problem-solving Declarative Requires knowing particular Mutually exclusive and
ttiqements of item architectural symbols and exhaustive

definitions for correct
solution.

Learned Requires the application of
Procedure fairly standard, algorithmic

procedum that usually
would have been learned
previously.

Discovered Requires the application of
Strategy knowledge or procedures in

a novel way. These items
are more puzzle-like.

Content area Site Design The item tests knowledge or Mutually exclusive and
skills associated with one of exhaustive
the recognized
subdisciplines of
architecture listed to the left.

Structural
Technology

(General)

Structural
Technology

(LAteral Forces)

Materials and
Methods

Construction
Documents
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Particular Identify Street Correct problem solving Neither mutually exclusive
Architectural Features requires that the candidate nor exhaustive

can recognize a sreet on a
site plan.

Environment Correct problem solving
requires that the candidate
knows about constraints due
to environmental factors
(e.g., weather, earthquakes)

Contour Lines Requires the ability to read
and interpret contour lines.

Forces Requires the ability to
recognize, interpret, and use
force vectors.

General Problem- Read and Problem solving goes Mutually exclusive, but
solving Approach Translate through cycles of getting not exhaustive

information from the
problem stem, using that
information to generate part
of the answer, and then
repeating.

Indicate Problem solving involves
Location of placing given elements into
New Feature new positions or adding

information to the provided
diagram.

Response Method Move/Rotate Requires arrangement of Exhaustive, but not
provided elements, mutually exclusive

Label Requires selecting which of
a provided set of labels
should be placed at various
indicated points on the
diagram.

Draw Line Requires drawing of lines
onto provided diagram.

Draw Arrow Requires drawing of arrows
onto provided diagram.
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Misleading Stem Incorrect Without detailed knowledge Mutually exclusive, but
COaracterisscs of an item type, the item's not exhaustive

stem suggests an incorrect
problem-solving method.

Diagram Without detailed knowledge
Incorrect of an item type or diagram

type, the item's provided
diagram suggests incorrect
problem-solving methods.

Relation between Stem The item stem provides Stem independent and
Stem and Problem- Independent practically no information Stem dependent are

solving that could not be gained mutually exclusive and
either through prior exhaustive.
knowledge or through the
provided figure.

Stem Dependent Problem-solving is
necessarily based on
information presented in the
item stem. This category is
the union of "Initial Info"
and "Interim Info"
categories.

Initial While the stem information Initial info in stem and
Information in is necessary for correct Interim info in stem are

Stem solution, that information is mutually exclusive and
not directly required during exhaustive across Stem
the course of problem dependent items.
solving.

Interim The information in the stem
Information in is needed a number of times

Stem during the course of correct
problem-solving.
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Completion Criteria Own Examinees must use their Mutually exclusive and
Knowledge own knowledge to decide exhaustive

Stop whether they are finished
responding to an item (i.e.,
if the answer is complete).
Neither the stem nor the
diagram directly supply this
information.

Diagram Stop The provided diagram
indicates whether an answer
is complete.

Diagram and The provided diagram along
Own with some specialized

Knowledge knowledge indicates
Stop whether an answer is

complete.

Stem Stop Information provided in the
stem indicates whether a
given answer is complete.

Number of Correct One Correc The item has only one Mutually exclusive and
Responses correct answer, exhaustive

Few Correct The item has two or three
correct answers, which are
variants of one another.

Many Correct The item has several correct
answers, some of which
may be qualitatively
different from others and
some of which may be
variants on another answer.
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Table 3
Attributes Associated with "Lib.-mv" Item (Figure 1)

Attribute Explanation

Specialized Diagram The provided figure is a site plan, which is an abstract
diagram of the actual building site. The site plan diagram
contains elements that require specialized knowledge to
interpret (e.g., contour lines, property lines, symbols for
trees).

Diagram Obvious Based on the provided elements and the operations
available (move, etc.), it is clear that the general procedure
for this task is to place the elements somewhere onto the
site.

Discovered Strategy There is no clear, algorithmic procedure for placing the
buildings onto the site. The examinees must bring to bear
knowledge learned in different situations to the solving of
this task.

Site Design This item presents a prototypical site design task.

Identify Street Recognizing the street on the site plan is important for
correct placement of the parking lot.

Contour Lines Correctly interpreting the site plan's contour lines is
necessary for conrect placement of the buildings on the site
(e.g., the buildings should not be placed on the steep
slope, but on relatively level ground).

Stem Independent Beyond the general task and the standard "preserve all
trees," the stem does not provide any information that is
vital to the correct solution of the item.

Many Correct There are a number of correct solutions to this item,
reflecting different arrangements of the buildings on the
site.

Move/Rotate The primary interface operation in this task is moving
elements and rotating them to fit better onto the site.

Own Stop Based on their own knowledge, it is up to the examinees to
determine when they are finished responding to the item.
Nothing in the stem nor in the diagram provides feedback
either on the correctness or completeness of a response.
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Table 4Attribute Assignmens to Processing Typs

Attribute Class Attribute Problem-Solving Process Type

Understand Solve Check
Characteistics of Picture X-rsn figur=iga

SciledDarDiagram X

Clarity of general task Diagram Obvious X X
Own Obvious X X

Problem-solvinS Lerned Algorithm X X
requirements of item

Declarative X X
Discovered Strategy X X

Content area Site Design X
Structural Technology X
Structural Tech. (Lateral Forces) X
Materials and Methods X
Construction Documents X

particular arhitectural Identify Street X X
featres

Environment X X
Contour Lines X X
Forces X X

Relation between stem Stem Independent X
and problem-solving

Stem Dependent X
Initial Info in Stem X
Interim Info. in Stem X

Number of correct One Correct X
responses

Few Correct X X
Many Correct X X

General problem-solving Read and Translate X
approach

Indicate Location of New Feature X
Response method Move/Rotate X

Label X
Draw Line X
Draw Arrow X

Completion Criteria Own Stop X
Diagram Stop X
Stem Stop X
Diagram + Own Stop X

Misleading Stem Incorrect X
Characteristics

Diagram Incorrect X
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Table 5Disvtriuto of Status Crous by Proficiency

Proficiency N Status Group

Student Intern Architect
N Columnu N Column %

Low 41 27 51 10 29 4 12
Medium 41 17 32 12 34 12 35
Taigh 40 9 17 13 37 18 53

Total 122 53 100 35 100 34 100
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Table 6Protocol Encoding Categories

Understand

ead stem: statements involving the reading of the problem stem. Read statements include
verbatim readings of the stem as well as partial reading of the problem stem.

Sniskaramllgl: statements involving the provided diagram. Diagram statements include verbatim
readings of verbal information as well as verbal descriptions of information in the diagram (e.g.,
"lateral forces coming that way").

Relate: statements regarding how the problem or parts of the problem relate to the examinee's own
knowledge. Relate statements consist of several types of verbalizations including verbalizations
regarding:

- an expectation or the violation of an expectation (e.g., "Normally there would be more
lines on this window drawing")

- recognition of the problem (or part of the problem) as of a particular type (e.g., "This is a
site vignette," "this is a perspective drawing")

- predictions as to the difficulty of the problem (e.g., "this will take a while')
- the definitions or ambiguity of sections of the problem (e.g., "is it an awning or a

hopper?", "most sheathing I know of is...")

oal: stating an intent or future action. Goal statements are often stated in the future tense or in
terms of "should be."

Perform: statements regarding the performance of an action. Perform statements are usually stated
in the present or "continuing" tense (e.g., "that dips here"). Perform statements relate only to
physical actions such as moving a block on the screen or locating a particular item in the diagram
(for the latter, e.g., "this is a flat area'). It may be difficult to distinguish between goal and perform
statements.

,.alu statements regarding the correctness of a performed action or the result of that
action (e.g., the location of a placed object). Evaluate-correct statements should only refer to the
examinee's own actions or answers, not to the problem itself. These statements may either reflect
judging the correctness of an action (e.g., "is that right?') or reflect the outcomes of a judgment
(e.g., "that isn't what I wanted to do").

Evaluate-compklte: statements suggesting that some action or goal has been completed. As with
evaluate-correct statements, evaluate-complete statements include verbalizations judging if
something has been finished (e.g., "is there anything else to be done?") as well as verbalizations
concerning the results of such judgments (e.g., "that's it," "that was easy').
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Table 7

lassification Results for Subjects Grouped by Proficiency and Status

Group h Problem-Solving Process Type

Understand Solve Check

Proficiency
Low 41 32 78 41 100 25 61
Medium 41 29 71 40 98 13 32
High 40 20 50 33 83 12 30

Status
Student 53 37 70 52 98 25 47
Intern 35 23 66 32 91 11 31
Arcbitect 34 21 62 30 88 14 41

Toad 122 81 66 114 93 50 41
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Table 8
Analvy's of Variance Results for Attribute Mast=r Data

Group Problem-Solving Process Type

Understand Solve Check
p-value p-value p-value

Between Subjects
Proficiency .0001 .0001 .0001
Status .5621 .1948 .3433
Proficiency x Status .1343 .4707 .7231

Within Subjectsa
Attribute .0001 .0001 .0001
Attribute x Proficiency .0013 .0001 .0130
Attribute x Status .0885 .0874 .4287
Attr. x Prof. x Status .4743 .0535 .1029

a p-values for within-subject effects were calculated using Wil Lambda.
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Table 9

Attibue MllasPbablities for Solve

Attribute Proficiency Overall Mean

Low Medium High

Many correct .35 .28 .35 .34
Draw Arrow .44 .38 .33 .38
Move/Rote .31 .39 .61 .44
Label .43 .66 .88 .66
Envirofnent .47 .60 .97 .68
Contour Lines .61 .78 .83 .74
Forces .70 .64 .88 .74
Identify Street .75 .76 .84 .78
Interim Info .67 .82 .92 .80
Diagram Obvious .70 .76 .94 .80
Own Obvious .81 .83 .86 .83
Few Correct .66 .91 .98 .85
Discovered Strategy .79 .89 .98 .89
Ind. Location .75 1.00 1.00 .92
Read + Translate .86 .98 .98 .94
Declarative .87 .97 1.00 .95
Learned Algorithm .92 .97 .98 .96
Stem Independent .89 .99 1.00 .96
StemDependent .93 1.00 1.00 .98
Draw Line .98 1.00 1.00 .99

Overall Mean .69 .78 .87 .78
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